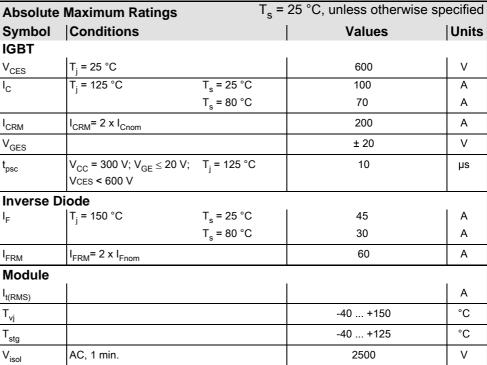


IGBT Module

SK71GB065TF

Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- Low tail current with low temperature dependence
- Hyperfast diodes
- Integrated NTC temperature sensor

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Remarks

• V_F = chip level value

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		3	4	5	V	
I _{CES}	V_{GE} = 600 V, V_{CE} = V_{CES}	$T_j = 25 ^{\circ}C$			0,3	mA	
I_{GES}	V_{CE} = 0 V, V_{GE} = 20 V	T _j = 25 °C			240	nA	
V _{CE0}		T _j = 25 °C		1,2	1,3	V	
		T _j = 125 °C		1,1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C			12	mΩ	
		$T_j = 125^{\circ}C$			15	mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{\text{chiplev.}}$		2	2,5	V	
		$T_j = 125^{\circ}C_{chiplev.}$		2,2	2,7	V	
C _{ies}				5,2		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5		nF	
C _{res}				0,3		nF	
Q_G	V _{GE} =0 20 V			1000		nC	
t _{d(on)}				71		ns	
t _r	R_{Gon} = 6,2 Ω	$V_{CC} = 400V$		22		ns	
E _{on}		I _{Cnom} = 60A		1,26		mJ	
^L d(off)	$R_{Goff} = 6.2 \Omega$	T _j = 125 °C		338		ns	
t _f		V _{GE} =±15V		40		ns	
E _{off}				2,08		mJ	
$R_{th(j-s)}$	per IGBT				0,5	K/W	

IGBT Module

SK71GB065TF

Target Data

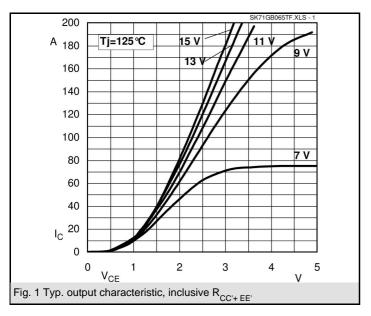
Features

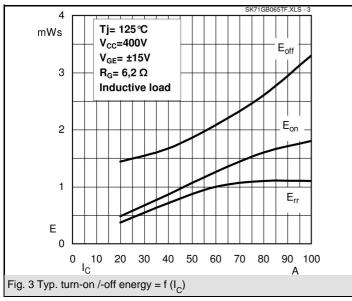
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- Low tail current with low temperature dependence
- Hyperfast diodes
- Integrated NTC temperature sensor

Typical Applications

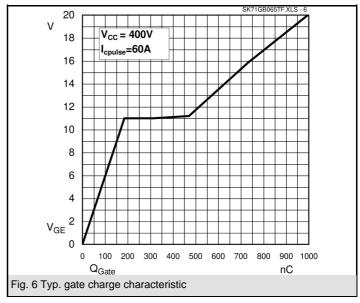
- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

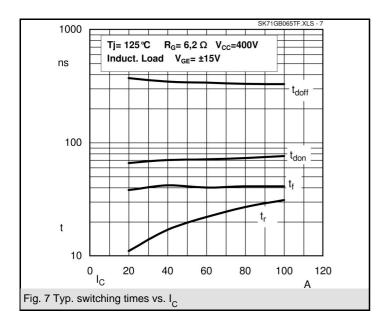
Remarks

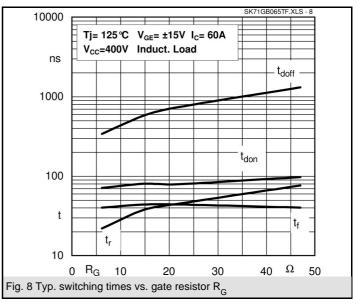

• V_F = chip level value

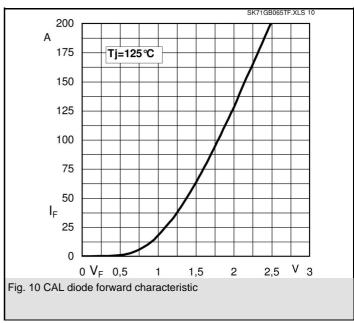


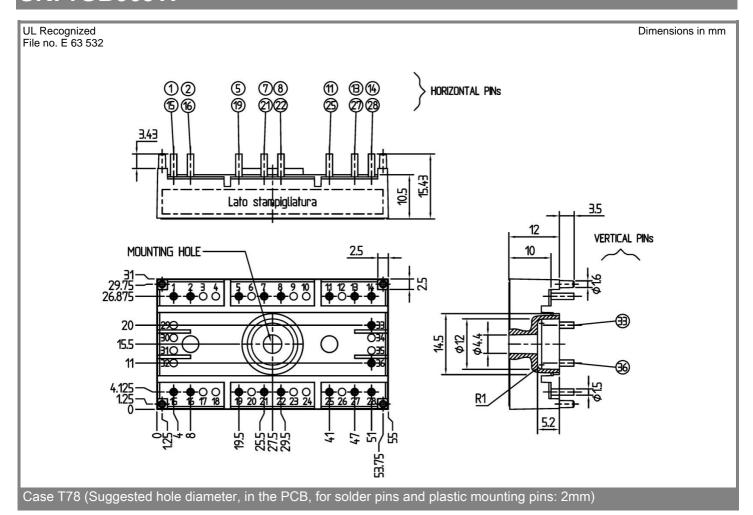

Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	I_{Fnom} = 30 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,1	1,6	V			
		$T_j = 125 ^{\circ}C_{chiplev.}$			1,2	V			
V_{F0}		T _j = 150 °C		0,85		V			
r _F		T _j = 150 °C		12		mΩ			
I _{RRM}	I _{Fnom} = 30 A	T _j = 125 °C		25		Α			
Q_{rr}	di/dt = 500 A/µs	·		1		μC			
E _{rr}	V _{CC} =400V			1		mJ			
$R_{th(j-s)D}$	per diode				1,8	K/W			
M_s	to heat sink		2,25		2,5	Nm			
w				30		g			
Temperat	Temperature sensor								
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω			

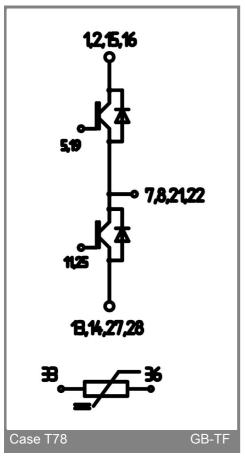

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.









4 21-02-2007 SCT © by SEMIKRON

